Solve the differential equation.

1.
$$\frac{dy}{dx} = x^2 \ln x$$

2.
$$\frac{dy}{dx} = \cos^2 y$$
 and $y = 0$ when $x = 0$

3.
$$\frac{dy}{d\theta} = \theta \sec \theta \tan \theta$$

4.
$$\frac{dy}{dx} = e^{x-y}$$
 and $y = 2$ when $x = 0$

5.
$$\int_0^2 e^{2x} dx =$$

(A)
$$\frac{e^4}{2}$$
 (B) $e^4 - 1$ (C) $e^4 - 2$ (D) $2e^4 - 2$ (E) $\frac{e^4 - 1}{2}$

6. If
$$\int x^2 \cos x \, dx = h(x) - \int 2x \sin x \, dx$$
, then $h(x) =$

(A)
$$2 \sin x + 2x \cos x + C$$

(B)
$$x^2 \sin x + C$$

(C)
$$2x \cos x - x^2 \sin x + C$$

(D)
$$4\cos x - 2x\sin x + C$$

(E)
$$(2-x^2)\cos x - 4\sin x + C$$

BONUS:

7. If the substitution $\sqrt{x} = \sin y$ is made in the integral $\int_0^{1/2} \frac{\sqrt{x}}{\sqrt{1-x}} dx$, rewrite the integral in terms of y.